Matematiksel Kara Delikler

2407
Matematiksel Kara Delikler

Matematiksel kara delikleri keşfetmeye hazır mısınız? Bu yazımda matematiksel kara delikler hakkında bilgi vermeye çalışacağım. “Evrendeki kara delikleri hepimiz duymuşuzdur. Peki ya matematikte de kara delik var desek ne düşünürsünüz?

Matematikte sayıların oluşturduğu kurallar neticesinde belirli bir tekrara düşen örüntülere “kara delik” denir. Matematiksel olarak ne ifade etmek istediğimizi anlatmadan önce size çok kısa bir hikaye anlatalım. Yunan Mitolojik kahramanlarından Sisypus, çok büyük bir taşı dağın tepesine koymak için görevlendirilmiş. Ama Sisypus taşı hiçbir zaman dağın tepesine koyamamış. Her seferinde çıkardığı taş elinden kayıyor ve tekrar aşağıya inip taşı alıp çıkarmaya çalışıyormuş. Hayatını bu taşı oraya koymaya adayan Sisypus, bir döngü biçimine girmiş ve tüm hayatını o tepede geçirmiştir.

Matematiksel Kara Delikler Hakkında Bilgi

İşte matematik dünyasında da bu döngüye benzer olaylar insanları hayrete düşürmektedir. Yıllarca bu konular üstünde çalışan matematikçiler “kara delik” diye adlandırdıkları ilginç matematiksel ifadeleri tanımladılar. Hadi şimdi kemerlerinizi bağlayın ve kara deliğin içine girmeye hazırlanın.

Matematiksel Kara Delikler Hakkında Bilgi

Boş kağıtlarınızı hazırlayın. Çok basit işlemler yapacağız. Kağıdınıza herhangi bir sayı yazın. Evet evet rastgele bir sayı olsun. Örneğin; 9288759 sayısını seçmiş olalım. Yapacağımız şey çok basit. Bu gördüğümüz sayıda kaç tane tek, kaç tane çift sayı olduğunu bulup bir de toplam kaç rakamdan oluştuğunu yazmamız gerekiyor. Yani bu sayıda (2,8,8) olmak üzere 3 tane çift, (9,7,5,9) olmak üzere 4 tane tek sayı bir de toplam 7 rakamdan oluştuğunu yazalım. Yeni sayımız çift rakamlar sayısı – tek rakamlar sayısı – toplam rakam sayısı olacak şekilde türetilecek. Dolayısıyla yeni sayımız kaç oldu arkadaşlar? 347 değil mi? Evet.

Aynı işlemi tekrar uyguluyoruz. 347 sayısında 1 tane çift 2 tane tek ve toplam 3 rakamdan oluşuyor. Yine aynı formatta (çift-tek-toplam) olacak şekilde sayımızı yazdığımızda 123 sayısını elde ederiz. 123 sayısı ile devam edersek yine 123 sayısını elde ederiz ve bundan sonra uyguladığımız kural ile sonuç hep 123 sayısı olur. Geçmiş olsun kara deliktesiniz! Biz matematikçiler bu kara deliğe “Sisypus kara deliği” diyoruz. Aynı tepeye koyamadığı taş gibi döngü içindeyiz.

Sisypus karadeliği

“Her şey güzel ama bu yaptığımız tüm sayılar için geçerli mi?” gibi bir soru gelebilir. Yine rastgele bir sayı alalım. 122333444455555666666777777788888999999999 gibi devasa bir sayı alalım. Şimdi aynı şekilde bu sayının içindeki çift sayılara – tek sayılara – toplam rakamlara bakalım. 20 tane çift sayı, 25 tane tek sayı ve toplam 45 sayıdan oluşuyor. Sıramızı bozmadan bu sayımızı kağıdımıza yazalım. Yeni oluşan sayımız 202545. Şimdi bu sayıda kaç tane çift kaç tane tek sayı olduğunu ve toplam kaç rakamdan oluştuğuna bakalım. 4 çift, 2 tek ve 6 rakamdan oluşan bir sayı. Dolayısıyla sizlerin de hemen tahmin ettiği üzere yeni sayımız 426 oldu. Bu sayıyı incelediğimizde 1 çift 2 tek ve toplam 3 rakamdan oluşuyor. Yeni sayımız 123 oldu ve kara deliğe tekrar hoş geldiniz. Devam ettiğiniz takdirde elde ettiğiniz yine 123 sayısı olacaktır. Göze güzel geliyor değil mi?

3 Yorum

  1. 426 sayısına baktığımız zaman 3 çift 0 tek ve toplam 3 sayıdan oluşmaktadır. Yeni sayımız kurala göre 303 olacaktır. Peki 303 sayısında kaç tane çift tek ve toplam sayı var? 1 çift 2 tek ve toplam 3 sayıdan oluşmaktadır. Yeni sayımız 123 olacaktır. Devam ettiğinizde artık 123 kara deliğinde olacaksınız.
    Sevgilerle

Uğur Gündoğan için bir cevap yazın İptal

Lütfen yorumunuzu buraya yazınız.
Lütfen isminizi buraya yazını.